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In this study, The steady flow of and within horizontal thin liquid symmetric
double-sided film is considered. The nonlinear differential equations that
govern such flow are derived from the Navier-Stokes equation. The solution
curves are obtained numerically by using MATLAB software for two non-
dimensional cases. Numerical method and MATLAB are used to obtain the
solutions and plot the curves for the result nonlinear differential equation
and for number of fluids.
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1. Introduction

The problem of the dynamic system has been
widely studied. This paper focused on a class of
dynamic system whose surface tension has a
significant mechanical effect on the system as a
whole and no solid boundaries presented. In several
areas in science and engineering a considerable
attention has been devoted to study the flow within
thin liquid films. Abdulahad (1989), discussed the
nature of the boundary condition at the free surface
of the liquid when, the liquid is in the form of a
moving thin film. The effect of inertia on the rupture
process of thin liquid film is studied by Erneux and
Davis (1993), and assumed that the film is thin
enough to neglect the gravity effect and the effect of
the Van der Waals potential is considered because of
thin thickness. He used integral method to study the
inertia effect on rupture process of thin liquid film
and numerical method to solve nonlinear evolution
equation in order to study the rupture process. In
Abdulahad and Derbaz (2014), the thinning process
of an inclined thin liquid film over a solid boundary
with an inclination angle o to the horizontal in
gravity driven flow and some of the theoretical
aspects of the instability development in an inclined
thin liquid films on a solid surface are studied. A
mathematical model is constructed by Abdulahad
(2010) to describe a two dimensional flow for an
inclined films with an inclination angle a to the
horizontal that drainages under the action of gravity.
Abdulahad and Derbaz (2014), is considered the
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thinning process of an inclined thin liquid films on a
solid surface for unsteady flow where the gravity
and other forces such as viscous and surface tension
forces have a significant effect on the flow by using
similarity solution. In Abdulahad and Hamad (2015),
it has been considered the unsteady flow within a
horizontal double-sided symmetric thin liquid film
with negligible inertia. The similarity and
perturbation methods are used to obtain a non-
linear differential equation that governs such flow
for unsteady state in dimensionless form. A partial
differential equation is derived in (Faraidun, 2007)
which describe the evolution of the interface shape
subject to surface tension, viscous forces, plus van
der Waals attractions. The stability and dynamics of
a thin liquid films flowing down on an inclined plane
by using integral approximation are investigated by
(Ismael, 2014) and the strong non-linear evolution
equations are derived by the integral approximation
with a specified velocity profile.

In this paper, the steady flows of and within thin
liquid symmetric double-sided film is considered.
The differential equation that governs such flow is
considered and the solutions curves are obtained
and it is shown graphically.

2. Formulation and governing equations

The flow under investigation has been modeled
as a steady, two dimensional flow of incompressible
fluid within a horizontal double-sided symmetric
thin liquid film; the coordinates x and z designate the
directions parallel and normal to the flow
respectively as shown in Fig. 1. Two free surfaces are
located atz = t+h(x) , where z is the transverse
coordinate, x is the axis of symmetry. For thin liquid

films we assume that %«1 for all x. Let
u(x,z) and w(x,z) denote the corresponding velocity
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filed of the fluid, where uand w are the velocity
component inx and z directions respectively. For
two dimensional motions of the liquid, we determine
the velocity and pressure distribution as follow:

In differential form, the Navier-Stokes equations
without external forces in x and z directions for
steady incompressible flow are given by:

~
el
= k‘\\-
17

Fig. 1: Cross- section of a symmetric film

du du P 9%u . 0%u
p [ua—+w£] = — e + }1[074-51, (211)
and
P 02 02
plu+wi]= - L+ u[sr+33] (212)

The velocity distribution for the flow is given by:

u = u(x) ]

v=20

we 7% } (2.1.3)
ox

p=pXx )

which satisfies the incompressibility condition,
ou  ow __
—t5. = 0. (2.1.4)

since the slope % is so small for thin liquid films, the

distribution satisfies the stress condition at the
surface of film z = h(x), which are:

1. Shear stress condition:

where W is the viscosity of liquid z—: is the velocity

(2.1.5)

gradient and the subscribe s denotes the values at
the surface of the film.

2. Normal stress condition:

T, = (—p + zu";—vzv)s. (2.1.6)

Now from the continuity equation (2.1.4), we
have:

ow  Ou

= (2.1.7)
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substituting it into equation (2.1.4), equation (2.1.6)
gives:

du
T = (_p - 2“&)3
The curvature of the liquid film is given by:
-3
_ 92h oh 2 /2
k=23 (1 + (5) ) .

. oh a2
Since, ™ « 1, then (&) can be neglected and
equation (2.1.9) reduces to give:

(2.1.8)

(2.1.9)

9%h

== (2.1.10)

also, on the surface of the liquid film with surface

tensiong, the normal component of stress is given by,
8%h

T, =0—.
ox2’

(2.1.11)

From equations (2.1.8) and (2.1.10) and on the
surface of the film, we have;

(2.1.12)

which holds everywhere. Notice that p,u and h are
functions of x only. Differentiate equation (2.1.12)
with respect to x, we get:

a2u 83h

i —2u§—0§, (2113)
from the velocity distributions, the longitudinal
equation of motion (2.1.1) for steady flow reduces to
give:

a a 2
p(ua—:) =-Z1 (2.1.14)
Equations (2.1.12) and (2.1.14), give:

a a3h a2
p(u3) =07 +3u5;. (2.1.16)

From the velocity distributions, the transverse
equation of motion (2.1.2), gives,

L GO (0_u)2_ Pu
0z P 0x2 p ox u6x3 '

Integrating equation (2.1.17) with respect to z,
we get:

(2.1.17)

d°u

p=7(Pr5z -0 (3) -

which can be written in the form:

03
nZY) + g0,

,z| < h

p=pX) +o0(z?) (2.1.18)
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This is relevant to order
approximation.

Since z = h(x) is a free surface of the liquid film,
then the conservation of the mass across the film

thickness of the film is therefore given by:

only higher

uh = Q, (2.1.19)
where Q is any constant.

Thus, equations (2.1.16) and (2.1.19) are the
governing equations of and within the liquid film.

3. Flows with negligible inertia

The governing equation (2.1.16) with negligible
inertia reduces to give:

a%h

3pd%u _
ax3

2= (2.2.1)

From equation (2.2.1), the only material constant
that is relevant is therefore:

(2.2.2)

density

Liquid 0,/cm’

o, m/sec?

Table 1: The value of the parameter V for some liquids
Surface tension

We can determine the value of the parameter V
for some liquids as shown in the following table.

Every solution of equations (2.1.16) and (2.1.19)
must be assessed with respect to full equations given
in the previous section. In particular, for
infinitesimal perturbations as a uniform film and
from Table 1, the analysis shows that inertia can
never be neglected for mercury; can only marginally
be neglected in water and carbon tetrachloride; and
can always be neglected in thin films of glycerin,
linseed oil and olive oil.

From equations (2.2.1) and (2.2.2), we have:

a3%h
ax3  Vox2

10%u _

=0. (2.2.3)

Integrating equation (2.2.3) with respect to x
twice, we get:

oh | 1

5+;u =Ax+B (224)

where, A and Bare arbitrary constants and can be
found from asymptotic or initial conditions.

Velocity
V,cm/sec

viscosity
U, g/cm. sec

Water 0.998 72.97 0.0113 2152.5074
Mercury 13.55 510.76 0.0115 10984.086
Glycerin 1.26 62.75 14.9 1.4038
Carbon 1.59 26.27 0.00974 899.0418
Tetrachloride
Linseed oil 0.94 33.57 0.4309 25.9698
Olive oil 0.91 33.56 0.8379 13.3508

From equation (2.1.19), equation (2.2.4) reduces
to give:
1

1)+ 5 =ax+B.

: (3 (2.2.5)

Equation (2.2.5) is related to lubrication theory,
but in the absence of surface —active solutes, it seems
to be a degenerate relationship; since the shear
stress at the edge of the film is then zero, and this
ensures that the velocity distribution across the film
is uniform, not parabolic.

Now equation (2.2.5) gives the following two
cases:

Case I:

IfA+#0, we can write Ax+ B =Dx and thus
equation (2.2.5), then becomes:

dh _

1(Q

;(H) +55=Dx. (2.2.6)
CaseIl:

If A = 0, then equation (2.2.5), gives:

1(Q) , dh _

C(H) +5=B. (2.2.7)

4. Non-dimensional analysis
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For non-trivial solution of equation (2.2.6), we
define the following non- dimensional parameters

for case I as follows:
1

x= 232‘1
vabs , (2.3.8)
Q3
h(x) = == f(n)
V3 D3
and equation (2.2.6), reduces to give:
df
f(n) e nf(n) = -1. (2.3.9)

The following analysis follows from the locus of
term of the function of f.(n) which is the critical
solution of equation (2.3.9). Note that we use ODE45
and plot commands in MATLAB to solve (2.3.9) and
all the curves in this paper.

The locus of points at which j—zz 0 may be

written from equation (2.3.9), as:

1

f(m) = ;

(2.3.10)

Some of the solution curves are obtained for
equation (2.3.9) in(n, f(n))-plane. Within the class of
the solutions there is a critical solution shown in Fig.
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2 which divided the region of the definition into two
sub regions. The behavior is as follows:

fe(n) ~ >nas n - —oo, (23.11)

and

f.(m) ~ %as 1N — oo, (2.3.12)

Now asn — —oo, all the films have constant
curvature, and f.(n) may be related to the supply of
fluid to thin films from a plateau border (a region of
large curvature).

Note that no solution intersects f.(n), and all the
solution curves which lie above the critical
solution f.(1), and have the asymptotic behavior:

f(m) = %nzas n - oo, (2.3.13)

The behavior (2.3.13) corresponds to the
behavior:

h(x) =% kx? as x » oo, (2.3.14)

In (x,h(x))-plane, where k is arbitrary constant
which labels each solution, so that all of these
solutions describe the transition from a film of
uniform thickness to one of constant curvature. All
the solution curves which lie below the critical
solution f.(n) in Fig. 2 have the asymptotic behavior:

f.(m) ~ %nzas n - oo, (2.3.15)
but f.(my) = 0 withuy — .

The behavior of (2.3.18) corresponds to:

h(x)~% kx? as x > —oo, (2.3.16)

but h(x)=0 for all values of x with u(x,) = o, and
this represents a film which terminates in a sink of
fluid at x = x,, where the thin film approximation
breaks down.

In (x,h(x))-plane Fig. 3 shown the thickness of
the film for different liquids namely: Mercury,
Carbon Tetrachloride, Water, Glycerin, Linseed oil
and Olive oil. The comparison of the thickness of
films for some liquids is shown in Fig. 4 and 5.

For non-trivial solution of equation (2.2.7), we
define the following non- dimensional parameters
for case II as follows:

Q
X=—==1
VB , (2.3.17)
h() = % f(n)
and thus equation (2.3.7), reduces to give
1, df _
wtm=1 (2.3.18)

or

1 df
(1 + f(_n)_l) =1 (2.3.19)
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Fig. 3: Solution curves of equation (2.3.9) in (x, h(x))
plane, for different liquids.
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Again we use ODE45 command in MATLAB to
solve (2.3.18).

Equation (2.3.19) is the governing equation for
case II. Integrating equation (2.3.19) with respect to
n, we get:

105
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Fig. 5: Comparison between the film thickness of olive oil
and linseed oil

f(m) + In(f() — 1) =n —In(ky),

Olive oil
Linseed oil

or

fm) + In(k,(f(n) — 1)) =,

where k, (f(n) — 1) > 0.

(2.3.20)

Some of the solution curves are obtained from
equation (2.3.20) in (n,f(n)) -plane as shown in Fig.

6. The locus of points for which j—; =0 and from

equation (2.3.18) gives,

f) = 1. (2.3.21)

This is also represented the critical solution f (1)
of equation (2.3.21).All the solution curves which lie
above the critical solution f.(n) have the asymptotic
behavior,

fm)~n asn - oo, (2.3.22)
which corresponds to the behavior:
h(x) ~ Ax asx — oo, (2.3.23)

in (x,h(x))- plane, where A is arbitrary constant
which labels each solution. Now the remaining
solution curves which lie below the critical solution
have the asymptotic behavior:

fm) ~1 as N —» —oo, (2.3.24)

but

f(my) =0 as uy — oo. (2.3.25)

Again the solutions represent a film which
terminates in a sink of fluid where the thin film
approximation breaks down.

In (x,h(x))-plane Fig. 7 shown the thickness of
the film for different liquids namely: Mercury,
Carbon Tetrachloride, Water, Glycerin, Linseed oil
and Olive oil. The comparison of the thickness of
films for some liquids is shown in Fig. 8 and 9.

6

Fig. 6: Solution curves of equation (2.3.19) in (n, f{(n))-
plane for different value of k; .
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Fig. 7: Solution curves of equation (2.3.19) in (x, h(x))
plane, for different liquids.
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5. Conclusion

Two dimensional flow of incompressible fluid
within a horizontal double-sided symmetric thin
liquid film with negligible inertia is considered. The
nonlinear differential equation that governs such
flow for steady flow is obtained for two cases. The
non-dimensional form of the non-linear differential
equation for the first case is obtained and solved
numerically by using Range Kutta method (ODE45).

Fig. 2 shows some of the solution curves of this
case in (n, f)- plane, where the region of definition of
the solution divided into two sub regions by a critical
solution f.(n)which may be related to the supply of
liquid to a thin film from the border. The curves
which lie above the critical solution are asymptotic

to f(n) = %nz as 1 tends to +oo. The curve which lie
below the critical solution have asymptotic behavior
to f(n) = %nzas n tends tooo, but f(n,) =0 as

uy — o and then it terminates to a sink where the
velocity u becomes very large when the thickness of
the film h is tends to zero as shown in Fig. 3. Fig. 3
shows the film thickness for different liquids, namely
Water, Carbon Tetrachloride, Mercury, Glycerin,
Linseed oil and Olive oil in (x,h(x))-plane. For the
second case, we found that the non-dimensional
form of the non-linear differential equation has an
exact solution which is obtained analytically and
some of the solution curves are plotted by using Mat
lab program and shown in Fig. 6. The region of the
solution curves of this case in (1, f()))-plane is again
divided into two sub regions by a critical solution
given by f.(n) = 1. The curves above the critical
solution are asymptotic to f()) =n as n tends to .
The curves below the critical solution are asymptotic
to f(n) =1 as 1 tends to—oo and with f(n,) = 0 as
Uy, = o and again these solutions represent a film
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which terminates in a sink of fluid where the film
approximation breaks down as shown in Fig. 6.
Furthermore, the film thickness for different liquids,
namely Water, Carbon Tetrachloride, Mercury,
Glycerin, Linseed oil and Olive oil in (x,h(x))-plane
are shown in Fig. 3 and 7 for the two cases. The
comparison of the thickness of films shows that the
thickness of Water is less than that of Carbon
Tetrachloride and this may be because, the surface
tension of water is greater than that of carbon
tetrachloride as shown in Fig. 4 and 8. Also, the
thickness of Olive oil is more than that of Linseed oil
for the viscosity of linseed oil is less than that of
Olive oil as it is shown in Fig. 5 and 9. Whereas, for
infinitesimal perturbations as a uniform film the
analysis shows that inertia can never be neglected in
mercury because of the large value of the velocity as
given in Table 1.
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